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We consider the dynamics in phase space in which particles follow Newtonian trajectories that are randomly
interrupted by collisions which equilibrate both the velocity and position of the particles. Collisions are
assumed to be statistically independent events of zero duration and the intercollision time is a random variable
with a negative exponential distribution. For this model, we derive an analytical expression for the Laplace
transform of the survival probability and quadrature expressions for mean first-passage times.
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I. INTRODUCTION

The first-passage time is the time required for a particle
reach a boundary for the first time. If the particle is destroy
at this boundary, the first-passage time is just the lifetime
the particle. When the dynamics is stochastic, the fi
passage time is a random variable, and its average ove
realizations of the particle trajectories yields the mean l
time of the particle in the system. It is well known that f
ordinary diffusive dynamics in an arbitrary one-dimension
potential, the calculation of the mean first-passage time
be reduced to quadratures@1,2#. However, when the dynam
ics of the particle is diffusive in phase space~as described by
the Kramers-Klein equation@3#!, the problem of calculating
the mean first-passage time is as yet unsolved.

The purpose of this paper is to show that the first-pass
time problem can be solved analytically for a strong collisi
model @4,5#, which is an alternative to the model describ
by the Kramers-Klein equation for dynamics in phase spa
Different collisional models and their application to reacti
rate theory were recently discussed by Berne@6#. In this
model, particles follow Newtonian trajectories which are
terrupted by collisions of zero duration. These collisio
serve to equilibrate both the velocity and position of t
particles. The time interval between successive collisions
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random variable described by the probability densityge2gt,
whereg is the collision frequency. For this model, we deriv
analytical expressions for both the Laplace transform of
survival probability and quadratures for mean first-pass
times.

This model was previously used by Skinner and Wolyn
@7# in their analysis of escape of particles from a metasta
potential well over a high potential barrier. They found th
for moderate values ofg, the escape rate predicted by th
model is close to the one obtained from the Bhatnag
Gross-Krook model@8#, in which only the velocity of par-
ticles is equilibrated after a collision.

Consider a particle of massm moving in the region2`
,x<a. We are interested in the first-passage time tox5a
given an initial positionx0 and velocityv0 . We assume tha
the potentialU(x) increases sufficiently fast asx→2` so
that a normalized phase-space equilibrium distribution co
sponding to a reflecting wall atx5a can be defined as

peq~x,v !5
H~a2x!e2b[ ~1/2!mv21U~x!]

E
2`

a

dxE
2`

1`

dv e2b[ ~1/2!mv21U~x!]

, ~1.1!

whereb215kBT is the thermal energy andH(x) is the step
function defined asH(x)50 for x,0 and H(x)51 for x
>0. For the strong collision model, the propagat
P(x,v,tux0 ,v0), which is the probability density of finding
the particle at the phase point (x,v) at time t, given that it
was initially at phase point (x0 ,v0), is described by the
equation:
l.
3702 ©1999 The American Physical Society
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]P~x,v,tux0 ,v0!

]t
5F2v

]

]x
1

1

m

dU

dx

]

]vGP~x,v,tux0 ,v0!

2gFP~x,v,tux0 ,v0!2peq~x,v !E
2`

a

dx8

3E
2`

1`

dv8 P~x8,v8,tux0 ,v0!G , ~1.2!

subject to the initial condition,P(x,v,t50ux0 ,v0)5d(x
2x0)d(v2v0). Since one is interested in the mean lifetim
of a particle in the region2`,x<a, we treatx5a as an
absorbing boundary, and require thatP(x,v,t) satisfies the
absorbing boundary conditions

P~x5a,v,0,tux0 ,v0!50 for x0,a, ~1.3!

expressing the fact that no particles enter~or reenter! the
system fromx.a.

II. SURVIVAL PROBABILITY AND LIFETIME
IN THE ABSENCE OF COLLISIONS

In the absence of collisions the motion is determinis
and the total energyE of a particle is a constant of motion
i.e.,

E5
mv0

2

2
1U~x0!5

mv2~ t !

2
1U„x~ t !…, ~2.1!

where x05x(0) and v05v(0) are the initial position and
velocity of the particle, respectively. For a deterministic m
tion, one can calculate the time needed for a particle to co
a certain distance as

t5E dx

v~xuE!
5E dxH m

2@E2U~x!#J
1/2

, ~2.2!

in which v(xuE) is the velocity of the particle obtained from
Eq. ~2.1!. The particle is able to reach the absorbing bou
ary at x5a if simultaneously~i! its energy is greater tha
U(a), i.e., E>U(a); and ~ii ! there is no potential barrie
greater thanE betweenx0 and x5a, i.e., U(x),E for x0
,x,a. When these conditions are not satisfied the part
never reaches the absorbing boundary atx5a. This can be
formulated in terms of the timet(x0 ,v0) taken by a particle
initially at (x0 ,v0) to reach the absorbing boundaryx5a,

t~x0 ,v0!5H `, E,Umax~x0!

t0~x0 ,v0!, E>Umax~x0!,
~2.3!

whereUmax(x0)5$max@U(x)#;x0<x<a%, and

t0~x0 ,v0!52E
xmin~E!

x0
dxH m

2@E2U~x!#J
1/2

H~2v0!

1E
x0

a

dxH m

2@E2U~x!#J
1/2

, E5
mv0

2

2
1U~x0!.

~2.4!
-
er

-

le

in which xmin(E) is the largest root of equationE5U(x) in
the region2`,x<x0 . The first term of Eq.~2.4! is the
time for a particle starting atx0 with negative velocity
2v0 to reachxmin(E), bounce back, and return tox0 with
positive velocityv0 , and the second term is the time to trav
directly from x0 to x5a with positive velocityv0 .

The survival probabilityS0(tux0 ,v0) is the probability
that a particle initially at the phase point (x0 ,v0) is still in
the system at timet. This probability is just equal to 1 up to
the time t(x0 ,v0), and zero thereafter, which allows us
write

S0~ tux0 ,v0!5H„t~x0 ,v0!2t…. ~2.5!

If we denote the Laplace transform of an arbitrary functi
g(t) as ĝ(s)5*0

`e2stg(t) dt, the Laplace transform of the
survival probability can be written as

Ŝ0~sux0 ,v0!5
1

s
2

e2st~x0 ,v0!

s
. ~2.6!

The lifetime of a particle initially at (x0 ,v0) is the time
integral of the survival probability,

E
0

`

S0~ tux0 ,v0! dt5Ŝ0~0ux0 ,v0!5t~x0 ,v0!, ~2.7!

as it should be.
One is often interested in the situation where the system

prepared with an initial distribution that coincides with th
equilibrium distribution,peq(x0 ,v0). In this case, the equi
librium averaged survival probabilityS0(t) is given by

S0~ t !5E
2`

a

dx0E
2`

1`

dv0S0~ tux0 ,v0!peq~x0 ,v0!. ~2.8!

Instead of using Eq.~2.5! in Eq. ~2.8! to obtainS0(t), the
following analysis turns out to be simpler. Using the defin
tion of the survival probability, S0(tux0 ,v0)
5*2`

a dx*2`
1`dv G0(x,v,tux0 ,v0), where G0(x,v,tux0 ,v0)

is the Green’s function of Eq.~1.2! with g50, we write the
time derivative of Eq.~2.8! as

dS0~ t !

dt

5E
2`

a

dx0E
2`

1`

dv0E
2`

a

dxE
2`

1`

dv
]G0~x,v,tux0 ,v0!

]t

3peq~x0 ,v0!

52E
0

`

dv vE
2`

a

dx0E
2`

1`

dv0G0~a,v,tux0 ,v0!

3peq~x0 ,v0!. ~2.9!

The second equality of this expression, which represents
flux escaping the system, is obtained in replacing]G0 /]t by
the expression in the right hand side of Eq.~1.2! with g
50, integrating the resulting expression overx and v and
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using the boundary conditions,G0(x,v→6`,tux0 ,v0)50
andG0(a,v,0,tux0 ,v0)50, as stated in Eq.~1.3!.

Next, we use the detailed balance relation

G0~a,v,tux0 ,v0!peq~x0 ,v0!5G0~x0 ,2v0 ,tua,2v !

3peq~a,2v ! ~2.10!

to transform Eq.~2.9! into

dS0~ t !

dt
52E

0

`

dv vpeq~a,v !E
2`

a

dx0

3E
2`

1`

dv0G0~x0 ,v0 ,tua,2v !

52E
0

`

dv vpeq~a,v !S0~ tua,2v !, ~2.11!

which relates the time derivative of the equilibrium-averag
survival probability to the survival probability of particle
starting atx5a with negative velocity. We introduce th
transition state ratekTST as the escape rate2(dS0 /dt) at t
50, i.e.,

kTST5E
0

`

vpeq~a,v !dv5S kBT

2pmD 1/2 e2bU~a!

E
2`

a

e2bU~x! dx

.

~2.12!

Using this, we rewrite Eq.~2.11! as

dS0~ t !

dt
52kTSTE

0

`

bmve2bmv2/2S0~ tua,2v !dv.

~2.13!

Taking the Laplace transform of this relation with the initi
condition S0(0)51, and making use of the expression f
Ŝ0(tua,2v) from Eq. ~2.6!, we find

Ŝ0~s!5
1

s
2

kTST

s2 E
0

`

bmve2bmv2/2@12e2sT~v !#dv.

~2.14!

In this equation,T(v)5t0(a,2v), as given in Eq.~2.4!, is
the time period required by a particle starting atx5a with
negative velocity2v to reach the turning pointxmin(E),
bounce back, and return tox5a. Now, by making the trans
formatione5mv2/2, we obtain

Ŝ0~s!5
1

s
2

kTSTb

s2 E
0

`

e2be@12e2sT~e!#de, ~2.15!

where the periodT(e) is now given by

T~e!52E
xmin~e!

a

dxH m

2@e1U~a!2U~x!#J
1/2

, ~2.16!

in which xmin(e) is the largest root of equatione5U(x)
2U(a) in the region2`,x<a.
d

III. SURVIVAL PROBABILITY AND MEAN LIFETIME IN
THE PRESENCE OF COLLISIONS

We are now in position to deal with the case of propag
tion in the presence of collisions as described by Eq.~1.2!.
The Green’s functionP(x,v,tux0 ,v0) is related to the
collision-free Green’s functionG0(x,v,tux0 ,v0) by the
Dyson-type equation

P~x,v,tux0 ,v0!5e2gtG0~x,v,tux0 ,v0!1gE
0

t

dt8E
2`

a

dx8

3E
2`

1`

dv8 e2g~ t2t8!G0~x,v,t2t8ux8,v8!

3peq~x8,v8!E
2`

a

dx9

3E
2`

1`

dv9 P~x9,v9,t8ux0 ,v0!. ~3.1!

The survival probabilityS(tux0 ,v0) describing the fate of the
particle initially at (x0 ,v0) is given by

S~ tux0 ,v0!5E
2`

a

dxE
2`

1`

dv P~x,v,tux0 ,v0!. ~3.2!

The integration of Eq.~3.1!, with respect tox andv leads to

S~ tux0 ,v0!5e2gtS0~ tux0 ,v0!1gE
0

t

e2g~ t2t8!S0~ t2t8!

3S~ t8ux0 ,v0!dt8, ~3.3!

in which S0(tux0 ,v0) is the survival probability in the ab
sence of collisions as defined in Sec. II. Taking the Lapla
transform of Eq.~3.3!, and solving the resulting equation fo
Ŝ, we find

Ŝ~sux0 ,v0!5
Ŝ0~s1gux0 ,v0!

12gŜ0~s1g!
, ~3.4!

in which Ŝ0(sux0 ,v0) and Ŝ0(s) are given in Eqs.~2.6! and
~2.15!, respectively.

Since the mean first passage time ist(x0 ,v0)
5Ŝ(0ux0 ,v0), making use of Eqs.~2.3!, ~2.4!, and ~2.6!
yields

t~x0 ,v0!

5H k21, 1
2 mv0

21U~x0!,Umax~x0!

k21@12e2gt0~x0 ,v0!#, 1
2 mv0

21U~x0!>Umax~x0!,

~3.5!

wheret0(x0 ,v0) is given by Eq.~2.4! and we have defined
the ratek as

k5g@12gŜ0~g!#5kTSTbE
0

`

e2be@12e2gT~e!#de,

~3.6!
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whereT(e) is given by Eq.~2.16!. It is clear from this rela-
tion thatk,g. Wheng→0, k is proportional tog, as one
would expect, whereask→kTST when g→`. This is the
consequence of the fact that the strong collision model d
not describe diffusive dynamics in the high collision fr
quency limit.

When the initial condition is taken to be the equilibriu
distribution restricted by additional condition that the initi
energy of particles is smaller thanU(a), i.e.,

peq
2~x0 ,v0!

5
peq~x0 ,v0!H@ 1

2 mv0
21U~x0!2U~a!#

E
2`

a

dxE
2`

1`

dv peq~x0 ,v0!H@ 1
2 mv0

21U~x0!2U~a!#

,

~3.7!

the survival probabilityŜ2(s), obtained by averaging Eq
~3.4! over this initial distribution is

Ŝ2~s!5
1

~s1g!@12gŜ0~s1g!#
. ~3.8!

The corresponding mean lifetime is

t25Ŝ2~0!5
1

k
, ~3.9!
es

wherek is given by Eq.~3.6!.
On the other hand, when the initial preparation is taken

be the equilibrium distribution,peq(x0 ,v0), given in Eq.
~1.1!, the survival probabilityŜ(s) becomes

Ŝ~s!5
Ŝ0~s1g!

12gŜ0~s1g!
. ~3.10!

In this case the equilibrium-averaged mean lifetimet is
given by,

t5
1

k
2

1

g
. ~3.11!

Comparison of Eqs.~3.9! and~3.11! shows thatt2 is larger
thant by exactlyg21, which is the expectation time for th
occurrence of a collision. This stems from the fact that wh
the system is initially prepared according topeq

2(x0 ,v0) no
particles can escape from the system prior to the first co
sion. To summarize, we have shown that for the strong c
lision model the calculation of the mean first passage ti
can be reduced to quadrature for an arbitrary o
dimensional potentialU(x).
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